
 

Pattern Recognition and Image Analysis, Vol. 12, No. 4, 2002, pp. 397–399.
Original Text Copyright © 2002 by Pattern Recognition and Image Analysis. English Translation Copyright © 2002 by 

 

MAIK “Nauka

 

/Interperiodica” (Russia).

 

Application of Latticed Cubature Formulas 
to the 2D Discrete Fourier Transform

 

1

 

V. B. Kashkin*, M. V. Noskov*, and N. N. Osipov**

 

* Krasnoyarsk State Technical University, ul. Kirenskogo 26, Krasnoyarsk, 660074 Russia
e-mail: noskov@fivt.kgtu.runnet.ru

** Krasnoyarsk State Pedagogical University, ul. Lebedevoi 89, Krasnoyarsk, 660049 Russia
e-mail: osipov@edk.krasnoyarsk.su

 

Abstract

 

—A version of the two-dimensional discrete Fourier transform is proposed. It is based on the use of
minimal latticed cubature formulas with a trigonometric degree of accuracy 

 

d

 

. The results of experimental pro-
cessing of 2D images are given.
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The suggestion to apply cubature formulas of a high
trigonometric degree of accuracy to a discrete Fourier
transform (DFT) was made in [1]. Below, we describe
this idea for the 2D case.
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be its Fourier series. In the case of DFT, the series of
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) at the nodes indicated
above; i.e.,
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 is an approximate value of the
Fourier coefficient
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Consider a latticed cubature formula of the form

(2)

where 
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 are integers and {
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} is a fractional part of 
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.
We call the function

a trigonometric monomial, and the number 

 

|α|

 

 + 

 

|β|

 

 is
called a degree of the monomial. Cubature formula (2)
is supposed to have a trigonometric degree of accu-
racy 

 

d

 

 if

(3)

holds for all the monomials with a degree of no more
than 

 

d

 

 and does not hold for at least one monomial with
the degree 

 

d

 

 + 1. If 
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 = 2
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 + 1, the minimal number of
nodes of cubature formula (2) of a trigonometric degree
of accuracy 

 

d

 

 is 
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 = 2(
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 + 1)
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 (see [2]). Cubature for-
mulas of a trigonometric degree of accuracy 

 

d

 

 = 2
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 + 1
with the node number
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 = 2(
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 + 1)2

are called minimal. For example, cubature formula (2)
with parameters p1 = 1 and p2 = 1 + 2(m + 1)r, where r
is integer coprime with m + 1 (see [3]), is minimal. The
descriptions of the minimal cubature formulas for peri-
odic functions of two variables can be found in [3]
and [4]. A set of trigonometric monomials φα, β(x, y),
subject to the conditions
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forms an orthonormal system relative to the inner pro-
duct

where

(5)

This assertion follows from the fact that cubature for-
mula (2) has a trigonometric degree of accuracy d =
2m + 1. Moreover, since monomials with the indices
αs , βs satisfying condition (4) are orthonormal, we
obtain
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Equations (1) and (6) imply bijective mapping of the
node set (x(j), y(j)) into a number set .

This version of DFT can be used for computer pro-
cessing of real-life images. In this case, a node system
differs from the conventional rectangular lattices
(see [5]). Figure 1 shows the example of node system (5)
for m = 3 and r = 1.

The nodes of system (5) lie, in general, at the inter-
section of lines parallel to y = x and lines parallel to y =
(m + 1 + s)x/(–m – 1 + s), where s = r–1mod(m + 1).
Below, we refer to these node systems as slanting lat-
tices. We can say that the nodes of periodic function
f(x, y) are selected at the line y = (1 + 2(m + 1)r)x if
x = j/N, 1 ≤ j ≤ N. Thus, the work with the slanting lat-
tice is reduced to the work with a one-dimensional
array, which makes it possible to use the known 1D
DFT algorithms.

The proposed version of the DFT was tested on two
slanting lattices with the (5)-type nodes for N = 217 (m =
28 – 1 = 255) and r = ±1. Gray-scale images 512 ×
512 pixels in size were chosen for testing. The error of
reconstruction for the direct and inverse Fourier trans-
forms proves to be immaterial, about 10–16. The low-
frequency and high-frequency filtering of one-dimen-
sional arrays, which correspond to the slanting lattices
considered above, yields the same results as conven-
tional methods with twice the number of nodes (218).
Thus, although the number of nodes in the slanting lat-
tices is half as much as in the rectangular lattices, the
quality of the results is practically the same and the pro-
cessing is three times faster. The use of slanting lattices
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Fig. 1.

Fig. 2. Fig. 3.
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in filtering problems reveals no vital difference
between the two cases r = 1 and r = –1. The proposed
version of the DFT can have advantages in its speed of
processing for problems of contour extraction and in
recognizing patterns from the Fourier spectrum.

Processing images by the slanting lattices yields the
problem of filling the “empty” pixels (i.e., pixels which
contain no lattice nodes). This problem (i.e., ascribing
some brightness values to empty pixels) has a variety of
solutions. The following approach proved to be opti-
mal: for the given slanting lattice, the coordinates of the
empty pixels are predefined and the filling table is con-
structed where, according to a certain rule, the pixels
are filled with the brightness values of the neighboring
pixels that contain the lattice nodes. However, empty
pixels may be filled at random: the empty pixel is filled
with the brightness value arbitrarily taken from the
closest pixel with the lattice node.

Figure 2 shows the original image—a fragment of
the satellite image of the earth’s surface; Fig. 3 shows
the same image after direct and inverse Fourier trans-
forms along the slanting lattice filling the empty pixels
with a black color. In Fig. 4, empty pixels are filled
arbitrarily.

Mean-square errors of Fig. 3 and Fig. 4 relative to
Fig. 2 are 12.68 and 0.11%, respectively.
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